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the solution vector x in Hu ber t space II for

the linear system Ax = y0 , where y0 E H is given in advancç and A

is a bounded linear invertible operator on H. We shall compare

convergence of two-par t splittings (i.e., linear stationary methods

of first degree) with convergence of three-part splittings (i.e.,

linear stationary methods of second degree). In fact, we wri te the

two-part and three-par t splittings of A as follows :

A A 1 +A 2
’ (1.].a)

and A A 1 +A 2 +A 3, (1.lb)

where A1, A2’, A2 and A
3 

are all ~ounded linear operators on H and

is presumed easy to compute (for example, if H is finite-

dimensional, then A1 might be represented by a diagonal matrix). We

are now ready to define the respec tively induced two-par t and three-

part sequences, (s’) and (x~3.

Definition 1.1. Given A A1 + A2 ’ where A2 ’ — A 2 ÷ A3, with

f ixed y0 € H. Then for any x0 ~ x0’ E H the p -paj~ ~j!que~c.ç~
fir

is defined iteratively by 0

Approved for public release;
distribution unlimited.
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H 
Aix~÷i + A 2 x~ y0 , k 0,1,2,... (1.2a)

The three-part sequence (Xk J is defined iteratively by

• 

. 

Alxk÷2 ~~2
Xk+i + A 3x.K y0 , k — 0,1,2,... (1.2b)

Note that if either the two-part sequence (xk’) or the three-

part sequence Cx~~ converges, then since A is invertible, convergence
is necessarily to the solution vector x where Ax y0. We shall

comment on the case where A is singular, at the end of this paper.
Now if A is a non-singular matrix on finite-dimensional H, then
consider A may be decomposed as

A D + E + F ,

where D is the diagonal part of A , E is the (lower triangular) matrix

whose entries match those of A below the main diagonal and F is the

corresponding upper triangular matrix taken from the entries of A
above the main diagonal. The two-part splitting (l.la) then yields
the well-known schemes

(a) Choosing A1 D, we have the Jacobi iteration scheme,

(b) Choosing A1 — D + E, we have the Gauss-Seidel iteration
scheme, (l.Zc)

(c) Choosing A1~~
..
~D + E  , with 0<~~~<2 ,we have

the successive overrelaxation (SOR) method.
.

Three-part splittings are given mention in ~7) and [9), Also, in a
paper of J. D. P. Donnelly, a theorem on chaotic relaxation is proven

t3, Theorem 2.1). This result is recaptured (and generalized) in the
setting of three-part splittings, cf. [2, Theorem 5.4).

. .
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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How are the two-part and three-part splittings related? Observe

that (1.2b) is equivalent to

r -1 -1 -1 iXk+2 1 1-A1 A2 A1 A3 1 Xk+1 A1 
~‘0 j  (1.3)

I — I  I + I

1’  J x ~ 0 J

f t f
B2 

• b

where x.~ -. x in H if and only if Zk -. Z — [
~1 in H ~ H. Mo~eover,

since (1.3) is the result of a two-part splitting on H $ H,

(Zk - Z) — B2
k(Z0 - Z). (1.4)

Compare (1.4) to the condition resulting from the two-part splitting

(1.la), viz.,

(x,~’ - x) — Bk(x0 - x), B — -A~~A2 ’. (1.5)

In other words , as B — -A1’A2 is the transition (or iteration)

operator for the two-part splitting (1.la), so is B2 (given in (1.3))
the transition matrix operator induced by the three-part splitting

(1.lb). The importance of these remarks is that a sufficient condi-

tion for the convergence of sequences (xk’) of (l.2a) or Cx~3 of

(1.2b) is that the spectral radius of the respective transition oper-

ators p(B) , and p(B2), be less one (this condition is necessary for
finite-dimensional H). We are ready for the following definition:

Definition 1.2. Given the sequences Cxk ’) of (l.2a) and (xv) of
(1.2b), then their respective asymptotic çpp~ve~rg~en~~ ~~~~~~~~~~~~~~~~~ ~~~

‘ and L~
* are given by

— -log10p (B) ,

R — 
~1og1O p(B2) ,
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where B — -A1~~A2
’ from (l.la) and B2 is given in (1.3).

Remark. We indicate base ten in the definition above only as a

convenience since h R  will then indicate, roughly, the number of

iterations or “hits” which will produce one more decimal place of

* accuracy (cf. [8, page 63)) .

We conc lude this section with an explicit statement of the goals

of this paper . Given Alxk+2 + A2xk+l + A3x,~ — y0 with A1 ff ~xed

(and presumed easy to invert). Then we seek to

1) Explicitly construct A3 (and hence, A2).

I ~~
. (Theorem 2.1, display (2.2), Hypothesis 3).

j 2) Explicitly compute p(B2) ,  and to

* 3) Compare with p(B) (noting that A — A1 + A2 ’ — A1(I-B)).

(Theorem 3.1, display (3.4) if p(B) is real; Theorem

3.3 if p(B) is imaginary.)

Thus , if for a fixed two-part splitting A A1 + A2’, we can def ine

that £3 in the three-part splitting A = A1 + A2 + A3 where p(32) < 1
* and p (B2) < p(B), then we will have established che greater conver-

gence rate of Cxk ) in (l.2b) over that of (xk’) in (l.2a).

2. Relating a(B) and a(B2) via analytic .~~~~

we are attempting to compare the spectral

radius p(B) of iteration operator B (see 1.5)) with the spectral radius
of the iteration ma trix operator B2 (see (1.3) , (1.4)). In the

following theorem, we assume tha t some bounds on c(B) , the spec trum

of B, are known (Theorem 2.1, Hypothesis 1). Then , £3 is explicitly

;

~

- - S.. ~~.
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constructed as a cer tain analytic operator function of B (Hypothesis

3). This automatically fixes £2 and hence, defines B2 in (1.3) . The

theor em characterizes a(B2) in terms of a(B), depending on the analy-

tic •(.) chosen (cf. (2.3)).

Theor em 2.1 ([4 , Th. 3.1)). Given invertible A — A1 + (A2 + A3)

where -B — A1 ’(A2 + A3). Suppose

1. c(-B) lies inside the cardioid (cf. Figure 1)

C’ — (2Z (1 + Re(s)) - 1: 1 eia) . (2.1)

2. •(•) is a complex analtyic function whose domain of defini-
tion contains ~(-B), and does not assume the value -I. on

3.

£3 — 
~
Aiø(-B)

~:~
-
~~ ~ 
,

~~~~~~~~ (2 2)

where o(-B) is the corresponding analytic operator-valued

function of -B, and I is the identity operator . Then with

B2 given in (1.3),

-c(B2) — a(~ (B)) U ~ ( ~~ ~) 
• (2.3)

Proof. Use ø(-B) to define U,V and £3 as follows:

U —

v — (ø(-B? + B

~~(-B) +1

A3 A1UV .

Then verify the identity

.‘B U + V + U V .

L .

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Note that from (1.3),

* . U+v uvi

* -I 0 .1

H ~ -v 1
• Let V — so that W B~W (which has the same spectrum as B2)0 I

has form
u 0]

H -I VJ

~ c(B~) — a(W ’B2W) = ~(U) U ~(V) ~

The conclusion now follows, and the proof is . U

R emark. Why does the cardiod e (Figure 1) enter into the theorem
in (2.1)? The reason is that we require that p(B2) < 1 so as to

guarantee convergence. It is shown in [2, pg. 335) that it is just

this condition, p(B2) < 1, that implies o(-B) is a subset of the

interior of cardioid C. In the special case where ø(’) is a constant,

however , bounding a(-B) by C is too crude . In fact , we note that for

constant 0(Z) — a ~ -1, we have

p(B2) <1 a(-B) € CZ : I Z - h I  < 2~ , (2.4)

the proof of which is in [4, Prop. 3.3).

3. The case ~(Z) is constant.

~~~~“11’~~~~~e.fort~~orth,we assume that analytic 0(Z) a ~ -1 for

fixed complexes and all complex Z. In operator terms, 0(B) — sI , for

all operators B on H. One immediate simp hicat ion is that A3 is eas7 ~~
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to compute, given the representation A A1 + A2 + A3 with £3 def ined

in (2.2) as Hypothesis 3 of Theorem 2.1. In fact, equation (1.2b)

for the three-part splitting (using (2.2) with •(Z) — s) reduces to

-1 i 1 SXk+2~~~~Al A~~~~~~
xk+l +~~~~~ xk

(3.1)

+ ((1-s)x.K+l + sx,K) + A~_ 1y~

where complex a - 1, A A1 + A 2 +.A3 A1(I-B) A1 + A 2’

Remark. If complex s is chosen to be zero, then (3.1), the equiva-

lent to the three-part expression (1.2b), reduces to the two-part

splitting (1.2a).

• We give an analysis of three-part convergence versus two-part
convergence for A — A1(I-B) in the following two case of the

iteration operator B, viz., when the spectrum of B, c(B) , is real,
and when it is pure imaginary.

3.1 Case (A): A — A1(I-B). 0(B) is real (~
(Z) — s — constant).

noted that if p(B2) < 1, for B2 given

in (1.3), then, necessarily, o(-B) is a subset of the interior of

- . 
cardioid C of (2.1), and if analytic 0 is constant, then o(-B) is a

• subset of the open disc in the complex plane centered at real 1, having

radius 2 (cf. (2.4)) . If, moreover, o(B) is real, then this reduces

to the condition that there exists real a, $ E a(-B) such that for

all )4 E c(-B) , -I. < a’  )~ ‘ <3. The next theorem responds to the

following:

I~iA 
~~~~~~~~~~~~~~ _._.. ~~~~~ __ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .... 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—.*~~• - - ,  —
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1) What is the optimal real a, call it ~~ we may assign

to •(-B) sI so as to give optimal p(B2) , the minimal

spectral. radius of B2 of (1.3)? Note that B2 depends on

the choice of £3 from (1.3), and A3, in turn, depends on

— sI from (2.2) .

2) Given optimal s~ , what is the explicit value of the

optimal, or minimal p(B2) as a function of the spectral

radius p(B) ?

Here is that theorem now.

Theorem 3.1. Given A A1(I-B), o(B) real (where A1
1 is easy to

compute). Suppose a,$ E c(-B) where fore all ~ E c(-B),

- 1 < a’  X ’ $ < 3 .  • (3.2)

Let m denote the midpoint of a(-B) , i.e.,

(3.3)

Then, according to whether m > 0 or m <0, we have

If m~~ -1 + ~/] . + p(B) If ni � -l + ..J1 + p(B) 

Then Then 
_ _ _ _ _ _ _ _

sQ _ n i  s0 -l+ ./ L+ p (B)  m > 0

p0(B2) 
P(
~
)
+
_
~
m p0(32) — -l + ./J~ + p(B) 

(p(B)’P)

(3.4)

If m ~ -1 + ,~f [  - p(B) If m ’ -1 + .1]. - p(B)

Then Then 
_ _ _ _ _ _ _ _

s m e - l+ .J 1 -p (B)  n < 0

B +p0(32) D(.
1~.~~~

m p0(B2) — l - ./ L -  p(B) —

— S
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By setting 0(-B) — s~I in (2.2), we construct that B2 in (1.3) whose

spectral radius is minimal relative to all ~(-B) sI, as a var ies

over all real a.

Moreover, in all four cases in the table, above, three-part

convergence is better than two-part convergence in the sense that

• p(B2) < p(B), or
* (3.5)

R > R ’ (cf. Def. 1.2).

On the proof of Theorem 3.1. Complete details appear in [4, section

5). The proof depends on several technical lemmas whose end objec-

tive is to establish that p(B2) 
= f V g, the maximum of a pair of

functions f and g, each defined for real s (recall that o(-B) — 51) .

The optimal (smallest) value of p(B2), which we denote p0(B2), is

computed as the minimum of £ V g These are the values given for

p0(B2) in the table above.U

Remark. Observe that in case the midpoint m < 0, then it is automatic

that p(B) < 1 , so that in the table (3.4), the expression .J]. - p(B)

is always well defined. Also, when m # 0, we produce an s0 where

p0(B 2) in all four categories is always less than p(B). This is easy

to confirm directly from the table (3.4) .

Example 3.2. Consider the 3x3 matr ix A and its decompositions

f l  0 1.
A I l  1 0

Lo 1 1

— Al(I 
~~~~~~~~~~~ 

-l 

(SOR decomposition) (3.6)

- _ _
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H
where for all w , 0 < w < 2 , 4, the SOR iteration matrix (cf. (l.2c))
given by

1 w_ i 0 w

B — -4 — -w(w-l) u-h .w2 (3.7)

-w(w-l)

Note that (3.6) presents two two-part splittings for A , viz., the

SOR decomposition with iteration matrix , B — 4, and the point-Jacobi

decomposition with iteration matrix J. Note that J is consi~tent1y

ordered, cyclic of index three with eigenvalues equal to the cube

roots of -1. Under these conditions, we may use a(J) the spectrum

of J, to f ind a(%), the spectrum of 4 [8, Theorem 4.3). In fact,
let w, 0 <w <2 define 4 in (3.7). Let J be given as in (3.6).

Then

for all ). E a(J), we have ~ E a(4) if and only if

()~+ w - l)3 +~~
2w3 0. (3.8)

Let us select

w — w0 — 0.897107 (3.9)

which, from (3.8) yields the spectrum of the SOR iteration matrix

4 , i.e., for w0 0.897107,
. 0

c(-ie
~ 

) — (-0.026473 , 0.211778, 0.2117913,
0

so that the hypotheses (3.2) and (3.3) of Theorem 3.1 write themselves

as follows:

a— -0.026473

— 0.211791 — ~(% — B) (3.10)
— 0.092659 
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From this , the SOR convergence rate for the two-par t splitting of

(3.6) is

R ’ — -log10(p(%)) ~ 0.674. (3 11)

Note . By trial and error , it seems the w0 of (3.9) is optimal,
• 

• 
i.e., produces the smallest ~(%). In any case, the fact that the

midpoint in of (3.10) is not zero, guarantees that improved convergence

must result in passing to the three-part splitting. In particular ,

from (3.10) in2 < -a and in > 0. From (3.4) in Theorem 3.1, w~ see

that optimal 
~~ 

is -

— in 0.092659,

while opt imal (smallest) spec tral radius p(B 2) is

- p(32) P(
~
)
+

_
~
m 0.109,

which defines the three-part convergence rate

R — -log10(p(B2)) 0.962 (3.12)

(compar e with(3.ll)).

Finally, note that the three-part convergence rate (3.12) pre-

dicta (asymptotically) h R  ~ 1 iteration for each decimal place of

accuracy, while the two-part SOR rare R ’ of (3.11) predicts l/R’ ~ 1.5

iterations per additional decimal place of accuracy. We found in

actual numerical examples with various values of y0 for Ax — y0,

and for various initial vectors x0, that these asymptotic convergence

rates manifested themselves after only seven or eight iterations. 

-- •— -• --~~-~~~~-~~ .~~~~~ •- ,. .-—,• *—~~ --, ——~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~
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3 2  Case (B): A A1(I-B) a(B) is imaginary (~

(z) — s — constant

* 

‘ cI.uuuI_ii_
III1

luI •E:t1:~~
vious section (c(B) real) , any two par t - 

-~

splitting A A1 + A2 — A(I-B), whose iteration operator B had an

unbalanced spectrum about the origin (in ~ 0) would always yield to

improvement convergence rate by passing to the three-part splitting

(Theorem 3.1). This section considers the case when 0(B) is on the

imaginary axis which proves to be far simpler than the real case.

First, observe that since analytic 0(Z) $ is constant, a(B), the

- 

-.. spectrum of B lies inside the circle of radius two, centered at real

1 (cf. (2.4)). This means that all ?~ in for a(B) imaginary, we have

I~ I < J ~. The imaginary o(B) proves simpler than the real a(B)

because whenever p(B) < J ~ (so that the two part sequence (xk’3 may
diverge), the three-part splitting, will always produce a convergent

sequence (xk). Moreover, no restrictions on the imaginary midpoint 
-

]

apply. The following theorem states the details for passing to the
optimal three-part splitting (1.2b) via construction of A3 as per

(2.2) for specifically defined constant O(-B) = sI.

Theorem 3.3. Given A — A1(I-B), a(B) imaginary (where A1 ’ is easy

to compute). Suppose p(B) < A/s. Then

case (a): If 
~

‘(
~~~ 

~ ‘ p(B)2 < 3 (0.786 � p(B) < 1.732) then

the optimal a — is the unique real solution in (-p(B),p(B)) to

the polynomial

+ 2s~~ - p(B)
2 — 0 . (0 ~ f s~~ < p(B))

L —,- - .-•— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Moreover , the optimal (smallest) p(B2) is then given by

P(B2)optimal — 1801

case (b) : If 0 <  p(B) 2 ~ (0 < p(B) ‘ 0.786) , then the

opt imal ~ — is given by

— p(B)2,

in which case the optimal p(B 2) is given by

P(B2)optimal ~D(~)

For case (a) and case (b) above,

p(B2) < 1, and p(B 2) < p (B) .

On the proof of Theorem 3.3. The complete proof requires the struc-

ture theorem of three-part splittings for constant 0(Z) — s [4 ,

Theorem 4.2), which we do not present here. U

Remark. Observe from the statement of Theorem 3.3, case (a), that

even if A — A1(I - B), where p(B) is near to unity (so that (xk’)

L converges slowly, if at all), then the three-part splitting guarantees

a p(B2) very near to s0 where ~~ + ~~~~ - 1 — 0, i.e., p(B2) ~
0.7167 (so that (x~3 converges). That is, although the two-part

convergence rate R ’ = 1og10(p(B)) ~ 0, we have the three-part

convergence rate R -log10(p(82)) ~ 0.14. This fact holds regard-

lees of the size of the system. To illustrate, consider the

following example. 

- ..- - —• - - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -~— ,

~~~—*~~~~~ —- • .  -—- - -— —• -, ,-
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Example 3.4
• The class Q of n x n matrices , n varies , is defined by

a — (A (n):n — 1,2 ,3, . . .)  where each A(n) is the

tridiagonal n x n matrix 
-

-

- 

2 1  o
A (n) — ~~~~ I — 2I~ (I~ -B(n)) .

. . 1
0 - 12 • •

Accordingly, the n x n skew-symmetric iteration matrix B(n) for the

two-part splitting A(n) — 2I~ + A2 ’ 21n~’n - B (n) ) is

• 0 -l 0
1 0 -l~

1 0 ’.. .
. —l

0 a

1 0

Now the n-element , imaginary spec trum o(B(n)), which depends on n, ie

c(B(n)) = {i c os(n  —c) : k — l,2 ,...n}

so that

p(B(n)) — cos (~ ~) ,  1 as n t

(See [1, page 380, Ex. 8, 9) for a related example.)

Now for n ~ 4, case (a) of Theorem (3.3) app lies . That is,

supponse A(n)x — y0. Then as n -‘ •, the three-part splitting will
produce a convergent sequence (xk), which eventually has every seventh

term (hR 7) yielding one more decimal place of accuracy, while the
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two-part sequence (xk ’) (given skew-symmetric iteration matrix B(n) )

becomes slower and slower in its convergence.

Actual computations reveal that even when n is large , the asymp-

totic convergence rate pr evails after only about a dozen iterations.

4. Some open ques tions

• 

€

_hh .

~~~~~

]

~~~~~~~~~~~~~~~~~
l that our investigation of three-part splittings

(l.hb) for invertible operator A on 11 relied on the imbedding (1.3)

as a two-part splitting on the larger space H ® H; for this reason,

convergence rate analysis of (Xk J versus that of (x,~’3 (cf. Def. 1.1)
is effected by comparing the spectral radius of B2 of (1.3) with that

of B in (1.5).
• Given fixed iteration operator B for A — A1(I-B) (equivalently,

invertible A1 is fixed) therefore, we constructed B2 by first

analytically defining 0(B) which, in turn, fixes A3 (cf. (2.2) of

Theorem 2.1), and hence, also fixes A2 in the expression A — A1 +

A2 + A3.
This paper proceeds under two restrictions, namely that the

analytic function 0 is a constant s (in operator terms, ~B SI),

and that the operator s A A1 + A2 ’ and A1 are both invertible ;

is supposedly easy to compute. Some work has been done in each of

these areas where these two restrictions are relaxed. We briefly

mention these results, while indicating paths of further exploration.

When analytic Ø(.) is not constant. In [2, p. 336), linear

analytic ~(Z) — p1z + is explored under the assumption that c(-B)

lies in the circle centered at 1, hav ing radius two. This constraint

on c(-B) is necessary if • is given in advance as a constant function



_____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~- -~~~~~~~~~~=~~~~

In [3), non-constant 0 is also studied. The main difficulty is

in the computation of A3 in (2.2) which involves the inverse of

(~(-B) + I); in [2), this entails the computation of (-p 1B +

+ 1)I)~~ which may be as difficult as the computation for A
_i
,

the inverse of the original operator A. (Of course, in the present

• paper , where 0(B) SI , then (Ø(-B) + is just the scaler operator

(a + 1) 11. Hence the questions:

4.1 . Given the operator A, and the invertible component A1 (so

that A — A1 + A2’). and given the explicit construction of

A~~for analytic ~ 
in (2.2), what is the convergence rate of

the three-part sequence 
~~~ 

defined by A — A1 + A2 +

càmpared to that of the two-part sequence Cx k) defined by

A A1 + A2 (necessarily, A
2’ 

A2 + A3), when analytic

• is not constant?

4.2 Moreover, under what circumstances, or for which 0, are the

o,p~erator terms A2 and A3 easy to compute? (More exactly,

since from (l .2b) , xk+2 = 
~
Al~~

A2xk+l 
- Al~~

A3xk +

we require easy computation only of the operator products

A1~~A2, A1
1
A3 and, of course,

When A is not invertible. In a paper of Michael Neumann [6), three-

part splittings are studied for non-invertible operators on finite-

• dimensional Hu bert space H, i.e., for rectangular matrices A. Given

that A is in x n matrix (an operator sending n-space to in-space by

left-hand multiplication on the columns), and given y0 in rn-space, we

are to find x in n-space such that Ax — y0. Either a solution vector

x exists, or else the system is not solvable, i.e., an approximate or

belt solution may be obtained . In the second instance, Neumann writes
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A A 1 +A 2’

where the splitting is subproper, i.e.,

rg(A) ~ rg(A1) and n(A) ~ n(A1),.

where rg( .) and n(.) indicate range and nullspace, respectively. If

equality obtains , the splitting is proper. The idea then is to

H compose the iteration matrix

B _ _ A
1
+A2

where A1
+ is the Moore-Penrose generalized inverse of A1. Thus , a

• counterpart to matrix B2 of (1.3) is possible. Under these more
general conditions, Neumann considers two cases, viz., when A1

+A2
1

is or is not weakly convergent .(A~7A2’ is weakly convergent means
the splitting A — A1 + A2’ is subproper , X E (A 1

+A2 1) I~I ~ 1, and
the Jordan blocks corresponding to X 1 are of order one).
Case (a) [6). -B — Al~A2’ is not weakly convergent: the constraint
here is that a(-B) C u f -h ) ,  where C.~ is the interior of the
cardioid C. of (2.1).

Case (b) -B = A1
+A2~ is weakly convergent. Then it is fur ther

assumed that o(-B) C CZ:Re(z) ~ 0) U f-i ) .
* Among many other things, Newmann exhibits certain analytic 

~
which effect A3 in the construction of the generalized three-part
splitting

A — A1 + A2 + A3.

The question is raised, therefore

4.3 Can specificially co~~uted convergence rates be given

for non-invertible matrices A under a three-part splitting,

relative to rates under a two-part spiittL~g?
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4.4 Can the results of Neumann be extended to the operator
- 

cue for infinite-dimensional ILilber t space H?
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